Examples of non-uniruled surfaces with pre-Tango structures involving non-closed global differential 1-forms

Yoshifumi TAKEDA*

Abstract

The pre-Tango structure is an ample invertible sheaf of locally exact differentials on a variety in positive characteristic, which often brings various sorts of pathological phenomena. We, however, know few examples of pre-Tango structures on non-uniruled varieties. In the present article, we explicitly construct non-uniruled surfaces with pre-Tango structures involving non-closed global differential 1-forms.

1 Introduction

Let X be a projective algebraic variety over an algebraically closed field k of characteristic $p > 0$ and let $F_X : X \to X$ be the relative Frobenius morphism over k. We then have a short exact sequence

$$0 \to \mathcal{O}_X \to F_X^* \mathcal{O}_X \to F_X^* \mathcal{B}_1^X \to 0,$$

where \mathcal{B}_1^X is the first sheaf of coboundaries of the de Rham complex of X. Suppose that there exists an ample invertible subsheaf \mathcal{L} of $F_X^* \mathcal{B}_1^X$ provided that $F_X^* \mathcal{B}_1^X$ is regarded as an \mathcal{O}_X-module. We call \mathcal{L} a pre-Tango structure (see Takeda [10], see also Mukai [4]). Let us consider the exact sequence

$$0 \to \mathcal{L}^{-1} \to F_X^* \mathcal{O}_X \otimes_{\mathcal{O}_X} \mathcal{L}^{-1} \to F_X^* \mathcal{B}_1^X \otimes_{\mathcal{O}_X} \mathcal{L}^{-1} \to 0.$$

By taking cohomology, we have

$$0 \to H^0(X, \mathcal{L}^{-1}) \to H^0(X, F_X^* \mathcal{O}_X \otimes_{\mathcal{O}_X} \mathcal{L}^{-1}) \to H^0(X, F_X^* \mathcal{B}_1^X \otimes_{\mathcal{O}_X} \mathcal{L}^{-1})$$

$$\to H^1(X, \mathcal{L}^{-1}) \to \cdots.$$

Since $H^0(X, F_X^* \mathcal{O}_X \otimes_{\mathcal{O}_X} \mathcal{L}^{-1}) = 0$ and $H^0(X, F_X^* \mathcal{B}_1^X \otimes_{\mathcal{O}_X} \mathcal{L}^{-1}) \neq 0$, we know that $H^1(X, \mathcal{L}^{-1}) \neq 0$. Hence, if X is a smooth variety of dimension greater than one, then the pair (X, \mathcal{L}) is a counter-example to the Kodaira vanishing theorem in positive characteristic. It is, however, hard to find such a pair in dimension greater than one. Meanwhile, regarding in dimension one, we know that almost all smooth projective curves have pre-Tango structures (see Takeda and Yokogawa [11]). In fact, Raynaud’s famous counter-example ([7]) is a uniruled surface constructed by using a certain pre-Tango structure on a smooth projective curve.

The uniruled surfaces which are constructed similarly to Raynaud’s method are the only known examples of smooth surfaces which have pre-Tango structures, as far as the author knows. Hence the following problem seems interesting:

Suppose that a smooth projective surface X has a pre-Tango structure. Then is X a uniruled surface?

*Department of Mathematics and Statistics, Wakayama Medical University, Wakayama City 6418509, Japan
Regrettably, the author does not know what the answer is. Meanwhile, it is known that, if a smooth non-uniruled projective variety \(X \) has an ample invertible sheaf \(L \) such that \(L^{p-1} \otimes \mathcal{O}_X \omega_X^{-1} \) is ample, then we have \(H^1(X, \mathcal{L}^{-1}) = 0 \) (Corollary II.6.3 in Kollár [3]). On the other hand, in case of normal projective varieties, the answer is negative. Indeed, Mumford gave an example of a pre-Tango structure on a normal projective surface, which is not uniruled ([6]). It seems, however, hard to know whether its desingularization has a pre-Tango structure or not.

For any smooth proper variety over \(k \) which lifts over the ring of Witt-vectors of length 2, the Kodaira vanishing theorem holds on it. Furthermore, if it is of dimension \(\leq p \), then its spectral sequence of Hodge to de Rham degenerates at \(E_1 \) (Deligne and Illusie [1]). So, it has no non-closed global differential 1-forms. In other words, the existence of non-closed global differential 1-forms is another typical pathological phenomenon in positive characteristic. Meanwhile, we know that, if a normal projective variety has non-closed global differential 1-forms, then so does its desingularization. Therefore, it seems appropriate to investigate normal projective surfaces with pre-Tango structures involving non-closed global differential 1-forms for the first step. In fact, we often see the normal uniruled surfaces, which are constructed similarly to Raynaud’s method by using pre-Tango structures on curves, having non-closed global differential 1-forms (cf. [11]).

On the other hand, it is well-known that we can easily construct surfaces with non-closed global differential 1-forms by using Mumford’s method, that is, by taking the composite of many Artin-Schreier coverings of base surfaces ([5]). We, however, hardly know their properties because of its elusive construction. Under the circumstances, the purpose of the present article is to give explicit and concrete examples of non-uniruled normal surfaces with pre-Tango structures involving non-closed global differential 1-forms in characteristic 2, 3. Precisely, we first consider a certain quotient of a superspecial abelian surface (the product of two supersingular elliptic curves) and take the composite finite covering of two suitable Artin-Schreier coverings of the quotient. On that finite covering, then we find out a pre-Tango structure with required attribute.

2 Case of characteristic \(p = 2 \)

2.1 A rational vector field on an abelian surface and the quotient

Let \(E_1 \) be the elliptic curve defined by

\[
y^2 + y = x^3,
\]

which is the unique supersingular elliptic curve in characteristic 2. We then have

\[
z + z^2 = w^3
\]

near the point at infinity, where \(z = y^{-1} \) and \(w = xy^{-1} \). Moreover, we have

\[
dy = x^2 dx \quad \text{and} \quad dz = w^2 dw.
\]

Note that

\[
x + w = x + \frac{x}{y} = \frac{x(y^2 + y)}{y^2} = \frac{x \cdot x^3}{y^2} = x^2 \frac{x^2}{y^2} = x^2 w^2.
\]

We then know

\[
dx = dw \quad \text{and} \quad \frac{\partial}{\partial x} = \frac{\partial}{\partial w}.
\]

Take a copy \(\tilde{E} \) of \(E_1 \) and take the local parameters \(\xi_0 \) and \(\xi_\infty \) corresponding to \(x \) and \(w \), respectively. We then have the same equations

\[
\xi_0 + \xi_\infty = \xi^2_0 \xi^2_\infty, \quad d\xi_0 = d\xi_\infty, \quad \frac{\partial}{\partial \xi_0} = \frac{\partial}{\partial \xi_\infty}.
\]
as above. Let A be the product $E_1 \times \tilde{E}$ and consider the p-closed rational vector field

$$D = \frac{\partial}{\partial x} + y^2 \frac{\partial}{\partial z} \quad (i = 0, \infty)$$

on A. We know that

$$D = \frac{1}{z^2} \left(z^2 \frac{\partial}{\partial x} + \frac{\partial}{\partial z} \right) \quad (i = 0, \infty)$$

and that the divisor of D is

$$(D) = -6S,$$

where S is the fibre of the point at infinity of E_1, in other words, the curve defined by $w = 0$ on A. Besides S is an integral curve of D.

Take the quotient X of A by D, i.e., the underlying topological space is the same as A and the structure sheaf is the sheaf of the germs killed by D (see Rudakov and Shafarevich [8]). Since D has only divisorial singularities, we have that X is a nonsingular surface of Kodaira dimension 1 (see Katsura and Takeda [2]). Let Γ and Σ denote the images by the quotient morphism of S (the same as above) and $T = \{x = 0\}$, respectively. Since S is an integral curve of D and T is not, we have that $[k(S):k(\Gamma)] = 2$ and $[k(T):k(\Sigma)] = 1$. Consider the relative Frobenius morphisms $F_2: \tilde{E} \to E$ and $F_1: E_1 \to E_1^{(p)}$ over k. We then have two fibrations: one is an elliptic fibration $\psi: X \to E_1^{(p)}$ induced from the first projection $A \to E_1$; and the other is a fibration $\phi: X \to E$ induced from the second projection $A \to \tilde{E}$, each fibre of which is an elliptic curve with one cusp. By regarding the fibration ψ, we know that Γ is a fibre of multiplicity 2 and that Σ is a fibre of multiplicity 1, and by regarding the fibration ϕ, we know that Γ is a section and that Σ is a 2-section.

Let us consider local defining equations of X. Set $\xi_i = \xi_i^2$ for $i = 0, \infty$ and take the affine open subsets $U_0 = E - \{\eta_\infty = 0\}$, $U_\infty = E - \{\eta_0 = 0\}$. Take, furthermore, the affine open subsets

$$V_i = \phi^{-1}(U_i) - \Gamma, \quad W_i = \phi^{-1}(U_i) - \Sigma \quad (i = 0, \infty)$$

of X. Since $y^2 + y = x^3$, we know $\frac{\partial y}{\partial x} = x^2$. Hence we have

$$D(xy + \xi_i) = \left(\frac{\partial}{\partial x} + y^2 \frac{\partial}{\partial z} \right)(xy + \xi_i) = y + x \cdot x^2 + y^2 = 0 \quad (i = 0, \infty).$$

Set $u = x^2$, $v = y^2$ and $t_i = xy + \xi_i$ for $i = 0, \infty$. We then know that $u, v, t_i \in k(X)$, $v^2 + v = u^3$, $t_0 + t_\infty = \eta_0 \eta_\infty$ and

$$t_i^2 = uv + \eta_i,$$

which are local defining equations of V_i for $i = 0, \infty$. Next set $r = u^2$, $s = z^2$. We then know that $r, s \in k(X)$, $s + s^2 = r^3$, $s = v^{-1}$, $u + r = u^2 r^2$ and $t_i^2 s^2 = r + \eta_i s^2$ by simple calculation. Therefore, by setting $q_i = t_i s$, we have local defining equations

$$q_i^2 = r + \eta_i s^2$$

of W_i for $i = 0, \infty$. By exterior differentiation on X, we obtain the relations:

$$du = dr, \quad dr = s^2 d\eta_i \quad (i = 0, \infty).$$

Let us consider the exact differential 1-form $\omega = du$. We then know that ω is regular on V_i for $i = 0, \infty$. Moreover, since $\omega = s^2 d\eta_i$ for $i = 0, \infty$, we know that ω is regular on W_i for $i = 0, \infty$. Therefore, we have that

$$\omega \in H^0(X, \mathcal{O}_X^{\frac{1}{2}}).$$

Since $s(1 + s) = r^3$ and Γ is a fibre of multiplicity 2, we know that $(s^2) = 12 \Gamma$. Hence the divisor of ω is

$$(\omega) = 12 \Gamma.$$
and that implies an inclusion
\[\mathcal{O}_X(12\Gamma)\omega \hookrightarrow \mathcal{R}_X. \]

By taking its adjoint, we obtain an injection
\[\mathcal{O}_X(6\Gamma) \hookrightarrow F_X, \mathcal{R}_X. \]

It is, however, not a pre-Tango structure because \(\Gamma \) is not ample.

2.2 A pre-Tango structure on a finite covering of the quotient

Let \(P_0 \) be the point defined by \(\eta_0 = 0 \) on \(E \), and set \(H = \varphi^{-1}(P_0) \). Consider the finite extension field \(k(X)(\theta, \zeta) \) subjected to
\[\theta^2 + \eta_0^2\theta = u \quad \text{and} \quad \zeta^2 + \eta_0^2\zeta = \eta_0 \]
and take the normalization \(\sigma : Y \to X \) in \(k(X)(\theta, \zeta) \). We then know that \(Y \) is not a uniruled surface. Furthermore, we have
\[\eta_0^2d\theta = du, \quad \eta_0^2d\zeta = d\eta_0 \]
on \(Y \). Since \(\omega = du = s^2d\eta_0 \), we obtain
\[\eta_0^2d\theta = s^2\eta_0^2d\zeta. \]

By regarding on \(Y \), we have
\[(\omega) = \sigma^*(12\Gamma + 2H). \]

That induces an inclusion
\[\mathcal{O}_Y(\sigma^*(12\Gamma + 2H))\omega \hookrightarrow \mathcal{R}_Y^1. \]

By taking its adjoint, we obtain an injection
\[\mathcal{O}_Y(\sigma^*(6\Gamma + H)) \hookrightarrow F_Y, \mathcal{R}_Y^1. \]

Moreover, it is a pre-Tango structure because \(6\Gamma + H \) is ample on \(X \) and so is \(\sigma^*(6\Gamma + H) \) on \(Y \).

Consider the differential 1-forms \(d\theta \) (which is exact) and \(t_0d\theta \) (which is not closed) on \(Y \). We have
\[d\theta = s^2d\zeta \quad \text{and} \quad t_0d\theta = q_{0sd}\zeta. \]

Since \(d\theta \) and \(t_0d\theta \) are regular on \(\sigma^{-1}(V_0) \), and \(s^2d\zeta \) and \(q_{0sd}\zeta \) are so on \(\sigma^{-1}(W_0) \), we have
\[d\theta, t_0d\theta \in H^0(\sigma^{-1}(\varphi^{-1}(U_0)), \Omega_Y^1) = H^0(U_0, \varphi_\ast\sigma_\ast\Omega_Y^1). \]

On the other hand, since \(\omega = du \) is regular on \(X \), we have that \(du \) is regular on \(\sigma^{-1}(\varphi^{-1}(U_\infty)) \). Hence we obtain that
\[du \in H^0(\sigma^{-1}(\varphi^{-1}(U_\infty)), \mathcal{R}_Y^1) = H^0(U_\infty, \varphi_\ast\sigma_\ast\Omega_Y^1). \]

Next consider \(t_\infty\omega \). We then know that \(t_\infty\omega = t_\infty du \) is regular on \(V_\infty \). Besides, since \(t_\infty du = q_{\infty sd}\eta_\infty \), we know that \(t_\infty\omega \) is regular on \(W_\infty \). By regarding on \(Y \), we have
\[t_\infty du \in H^0(\sigma^{-1}(\varphi^{-1}(U_\infty)), \Omega_Y^1) = H^0(U_\infty, \varphi_\ast\sigma_\ast\Omega_Y^1). \]

Now let us consider \(\mathcal{O}_E \)-submodules \(\mathcal{R} \) and \(\mathcal{J} \) of \(\varphi_\ast\sigma_\ast\Omega_Y^1 \) such that
\[
\begin{align*}
\mathcal{R}|_{U_0} &= \mathcal{O}_E|_{U_0}d\theta, & \mathcal{R}|_{U_\infty} &= \mathcal{O}_E|_{U_\infty}du, \\
\mathcal{J}|_{U_0} &= \mathcal{O}_E|_{U_0}d\theta + \mathcal{O}_E|_{U_0}t_0d\theta, & \mathcal{J}|_{U_\infty} &= \mathcal{O}_E|_{U_\infty}du + \mathcal{O}_E|_{U_\infty}t_\infty du.
\end{align*}
\]
Note that the sections of \(\mathcal{S} \) which are not contained in \(\mathcal{R} \), are non-closed differential 1-forms. Meanwhile, since \(\eta_2^2 d\theta = du \), we know that \(\mathcal{R} \cong \mathcal{O}_E(2P_0) \). Moreover, since \(t_0 + t_\infty = \eta_0 \eta_\infty \), we have

\[
\eta_2^2 t_0 d\theta = t_\infty du + \eta_0 \eta_\infty du
\]

and so,

\[
(d\theta, t_0 d\theta) = (du, t_\infty du)
\]

\[
\left(\frac{1}{\eta_0}, \frac{\eta_\infty}{\eta_0}, 0, \frac{1}{\eta_0^2}\right).
\]

Therefore, we obtain a short exact sequence

\[
0 \to \mathcal{R} \to \mathcal{S} \to \mathcal{O}_E(2P_0) \to 0.
\]

Since \(H^1(E, \mathcal{R}) \cong H^1(E, \mathcal{O}_E(2P_0)) = 0 \) and \(H^0(E, \mathcal{O}_E(2P_0)) \neq 0 \), we know \(H^0(E, \mathcal{R}) \cong H^0(E, \mathcal{S}) \). Hence we conclude that \(Y \) has non-closed global differential 1-forms.

3 Case of characteristic \(p = 3 \)

3.1 A rational vector field on an abelian surface and the quotient

Let \(E_1 \) be the elliptic curve defined by

\[
y^2 = x^3 - x,
\]

which is the unique supersingular elliptic curve in characteristic 3. We then have

\[
z = w^3 - wz^2
\]

near the point at infinity, where \(z = y^{-1} \) and \(w = xy^{-1} \). Moreover, we know \(2ydy = -dx \) and so

\[
dy = \frac{dx}{y},
\]

which is an exact global differential 1-form. Set \(\Delta = y \frac{\partial}{\partial x} \). We then have that \(\Delta \) is a regular vector field on \(E_1 \) such that \(\Delta^3 = 0 \). Note that

\[
z = w^3 - wz^2
\]

\[
z(1 + wz) = w^3
\]

\[
z \left(\frac{1}{w^3} + \frac{1}{w^3} wz \right) = 1
\]

\[
\frac{1}{w^3} + \frac{1}{w^3} wz = y
\]

\[
\frac{1}{w^3} + \frac{1}{w^3} w \frac{w^3}{1 + wz} = y
\]

\[
\frac{1}{w^3} + \frac{w}{1 + wz} = y.
\]

We then obtain that

\[
dy = d \frac{w}{1 + wz}.
\]
Meanwhile, we know that \(y \) (resp. \(w/(1 + wz) \)) is a local parameter near the point over \(x = 0 \) (resp. \(x = \infty \)).

Take a copy \(\tilde{E} \) of \(E_1 \) and take the local parameters \(\xi_0 \) and \(\xi_{\infty} \) corresponding to \(y \) and \(w/(1 + wz) \), respectively. We then have

\[
d\xi_0 = d\xi_{\infty} \quad \text{and} \quad \frac{\partial}{\partial \xi_0} = \frac{\partial}{\partial \xi_{\infty}}.
\]

Let \(A \) be the product \(E_1 \times \tilde{E} \) and consider the \(p \)-closed rational vector field

\[
D = \Delta - x^3 \frac{\partial}{\partial \xi_i} \quad (i = 0, \infty)
\]
on \(A \). We know that

\[
D = \frac{1}{\xi^2} \left(\xi^2 \Delta - (1 + wz) \frac{\partial}{\partial \xi_i} \right) \quad (i = 0, \infty)
\]

and that the divisor of \(D \) is

\[
(D) = -6S,
\]

where \(S \) is the fibre of the point at infinity of \(E_1 \), in other words, the curve defined by \(w = 0 \) on \(A \). Besides \(S \) is an integral curve of \(D \).

Take the quotient \(X \) of \(A \) by \(D \), i.e., the underlying topological space is the same as \(A \) and the structure sheaf is the sheaf of the germs killed by \(D \) (see [8]). Since \(D \) has only divisorial singularities, we have that \(X \) is a nonsingular surface of Kodaira dimension 1 (see [2]). Let \(\Gamma \) and \(\Sigma \) denote the images by the quotient morphism of \(S \) (the same as above) and \(T = \{ x = 0 \} \), respectively. Since \(S \) is an integral curve of \(D \) and \(T \) is not, we have that \([k(S) : k(\Gamma)] = 3 \) and \([k(T) : k(\Sigma)] = 1 \). Consider the relative Frobenius morphisms \(F_\xi : \tilde{E} \to E \) and \(F_1 : E_1 \to E_1^{(p)} \) over \(k \). We then have two fibrations: one is an elliptic fibration \(\psi : X \to E_1^{(p)} \) induced from the first projection \(A \to E_1 \); and the other is a fibration \(\varphi : X \to E \) induced from the second projection \(A \to \tilde{E} \), each fibre of which is an elliptic curve with one cusp. By regarding the fibration \(\psi \), we know that \(\Gamma \) is a fibre of multiplicity 3 and that \(\Sigma \) is a fibre of multiplicity 1, and by regarding the fibration \(\varphi \), we know that \(\Gamma \) is a section and that \(\Sigma \) is a 3-section.

Let us consider local defining equations of \(X \). Set \(\eta_i = \xi^3 \) for \(i = 0, \infty \) and take the affine open subsets \(U_0 = E - \{ \eta_\infty = 0 \}, U_\infty = E - \{ \eta_0 = 0 \} \). Take, furthermore, the affine open subsets

\[
V_i = \varphi^{-1}(U_i) - \Gamma, \quad W_i = \varphi^{-1}(U_i) - \Sigma \quad (i = 0, \infty)
\]
of \(X \). Since \(\Delta(y) = 1 \) and \(\Delta(x) = y \), we obtain

\[
D(xy + \xi_i) = \left(\Delta - x^3 \frac{\partial}{\partial \xi_i} \right)(xy + \xi_i) = y^2 + x - x^3 = 0 \quad (i = 0, \infty).
\]

Set \(u = x^3, v = y^3 \) and \(t_i = xy + \xi_i \) for \(i = 0, \infty \). We then know that \(u, v, t_i \in k(X), v^2 = u^3 - u \) and

\[
t_i^3 = uv + \eta_i,
\]

which are local defining equations of \(V_i \) for \(i = 0, \infty \). By exterior differentiation on \(X \), we obtain the relations:

\[
vdv = du, \quad u^3dv = -d\eta_i \quad (i = 0, \infty).
\]

Next set \(r = w^3, s = \xi^3 \). We then know that \(r, s \in k(X), s = r^3 - rs^2, s = v^{-1}, r = uv^{-1} \) and \(t_i^3s^3 = rs + \eta_is^3 \).

Therefore, by setting \(q_i = t_is \), we have local defining equations

\[
q_i^3 = rs + \eta_is^3
\]
of \(W_i \) for \(i = 0, \infty \).
Let us consider the exact differential 1-form $\omega = dv$. We then know that ω is regular on V_i for $i = 0, \infty$. Moreover, by simple computation, we have $\omega = -\frac{s^2}{1+rs} d\eta_i$ for $i = 0, \infty$. Hence we know that ω is regular on W_i for $i = 0, \infty$. Therefore, we have that $\omega \in H^0(X, B_X)$.

Since $s(1+rs) = r^3$ and Γ is a fibre of multiplicity 3, we know that $(s^2) = 18\Gamma$. Hence the divisor of ω is $(\omega) = 18\Gamma$ and that implies an inclusion $\mathcal{O}_X(18\Gamma) \hookrightarrow B_X^{1}$.

By taking its adjoint, we obtain an injection

$$\mathcal{O}_X(6\Gamma) \hookrightarrow F_X^{*}B_X^{1}.$$

It is, however, not a pre-Tango structure because Γ is not ample.

3.2 A pre-Tango structure on a finite covering of the quotient

Let P_0 be the point defined by $\eta_0 = 0$ on E, and set $H = \varphi^{-1}(P_0)$. Consider the finite extension field $k(X)(\theta, \zeta)$ subjected to

$$\theta^3 - \eta_0^3\theta = v \quad \text{and} \quad \zeta^3 - \eta_0^3\zeta = \eta_0$$

and take the normalization $\sigma : Y \to X$ in $k(X)(\theta, \zeta)$. We then know that Y is not a uniruled surface. Furthermore, we have

$$-\eta_0^3d\theta = dv, \quad -\eta_0^3d\zeta = d\eta_0$$

on Y. Since $\omega = dv = -\frac{s^2}{1+rs} d\eta_0$, we obtain

$$\eta_0^3d\theta = -\frac{s^2}{1+rs} d\zeta.$$

By regarding on Y, we have

$$(\omega) = \sigma^*(18\Gamma + 3H).$$

That induces an inclusion

$$\mathcal{O}_Y(\sigma^*(18\Gamma + 3H)) \hookrightarrow B_Y^{1}.$$

By taking its adjoint, we obtain an injection

$$\mathcal{O}_Y(\sigma^*(6\Gamma + H)) \hookrightarrow F_Y^{*}B_Y^{1}.$$

Moreover, it is a pre-Tango structure because $6\Gamma + H$ is ample on X and so is $\sigma^*(6\Gamma + H)$ on Y.

Consider the differential 1-forms $d\theta$ (which is exact) and $t_0d\theta$ (which is not closed) on Y. We have

$$d\theta = -\frac{s^2}{1+rs} d\zeta \quad \text{and} \quad t_0d\theta = -\frac{q_0s}{1+rs} d\zeta.$$

Since $d\theta, t_0d\theta$ are regular on $\sigma^{-1}(V_0)$ and since $\frac{s^2}{1+rs} d\zeta, \frac{q_0s}{1+rs} d\zeta$ are so on $\sigma^{-1}(W_0)$, we have

$$d\theta, t_0d\theta \in H^0(\sigma^{-1}(U_0), \Omega_Y^{1}) = H^0(U_0, \varphi_*\sigma_*\Omega_Y^{1}).$$
On the other hand, since \(\omega = dv \) is regular on \(X \), we have that \(dv \) is regular on \(\sigma^{-1}(\phi^{-1}(U_\infty)) \). Hence we obtain that
\[
dv \in H^0(\sigma^{-1}(\phi^{-1}(U_\infty)), \mathcal{B}_Y^1) = H^0(U_\infty, \phi_\ast \sigma_\ast \mathcal{B}_Y^1).
\]
Next consider \(t_\infty \omega \). We then know that \(t_\infty \omega = t_\infty dv \) is regular on \(V_\infty \). Besides, since \(t_\infty dv = -\frac{q_{i=0}^{\infty}}{1 + r s} d\eta_\infty \), we know that \(t_\infty \omega \) is regular on \(W_\infty \). By regarding on \(Y \), we have
\[
t_\infty dv \in H^0(\sigma^{-1}(\phi^{-1}(U_\infty)), \Omega_Y^1) = H^0(U_\infty, \phi_\ast \sigma_\ast \Omega_Y^1).
\]
Now let us consider \(E \)-submodules \(\mathcal{R} \) and \(\mathcal{I} \) of \(\phi_\ast \sigma_\ast \Omega_Y^1 \) such that
\[
\mathcal{R}|_{U_0} = \mathcal{E}|_{U_0} d\theta, \quad \mathcal{R}|_{U_\infty} = \mathcal{E}|_{U_\infty} dv,
\]
\[
\mathcal{I}|_{U_0} = \mathcal{E}|_{U_0} d\theta + \mathcal{E}|_{U_0} t_0 d\theta, \quad \mathcal{I}|_{U_\infty} = \mathcal{E}|_{U_\infty} dv + \mathcal{E}|_{U_\infty} t_\infty dv.
\]
Note that the sections of \(\mathcal{I} \) which are not contained in \(\mathcal{R} \), are non-closed differential 1-forms. Meanwhile, since \(-\eta_0^3 d\theta = dv \), we know that \(\mathcal{R} \cong \mathcal{E}(3P_0) \). Recall that \(\xi, \xi_\infty \) are corresponding to \(y, w/(1 + wz) \), respectively. Therefore, the difference \(\xi_0 - \xi_\infty \) is corresponding to \(1/w^3 \). Denote it by \(b_{0\infty} \). We then have that \(b_{0\infty} \) is a section in \(\mathcal{E}(U_0 \cap U_\infty) \). Moreover, since \(t_i = xy + \xi_i \) for \(i = 0, \infty \), we know that \(t_0 - t_\infty = b_{0\infty} \). Hence we have
\[
-\eta_0^3 t_0 d\theta = t_\infty dv + b_{0\infty} dv
\]
and so,
\[
(-d\theta, -t_0 d\theta) = (dv, t_\infty dv)
\]
\[
\begin{pmatrix}
\frac{1}{\eta_0^3} & \frac{b_{0\infty}}{\eta_0^3} \\
0 & 1/\eta_0^3
\end{pmatrix}.
\]
Therefore, we obtain a short exact sequence
\[
0 \to \mathcal{R} \to \mathcal{I} \to \mathcal{E}(3P_0) \to 0.
\]
Since \(H^1(E, \mathcal{R}) \cong H^1(E, \mathcal{E}(3P_0)) = 0 \) and \(H^0(E, \mathcal{E}(3P_0)) \neq 0 \), we know \(H^0(E, \mathcal{R}) \subsetneq H^0(E, \mathcal{I}) \). Hence we conclude that \(Y \) has non-closed global differential 1-forms.

Acknowledgements

The author expresses his sincere gratitude to Professor Toshiyuki Katsura for his insightful comments.

References

