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Abstract

The pre-Tango structure is an ample invertible sheaf of locally exact differentials on a variety in
positive characteristic, which often brings various sorts of pathological phenomena. We, however, know
few examples of pre-Tango structures on non-uniruled varieties. In the present article, we explicitly
construct non-uniruled surfaces with pre-Tango structures involving non-closed global differential 1-
forms.

1 Introduction

Let X be a projective algebraic variety over an algebraically closed fieldk of characteristicp > 0 and let
FX : X̃ → X be the relative Frobenius morphism overk. We then have a short exact sequence

0→ OX → FX∗OX̃ → FX∗B
1
X̃
→ 0,

whereB1
X̃

is the first sheaf of coboundaries of the de Rham complex ofX̃. Suppose that there exists an

ample invertible subsheafL of FX∗B
1
X̃

provided thatFX∗B
1
X̃

is regarded as anOX-module. We callL a
pre-Tango structure(see Takeda [10], see also Mukai [4]). Let us consider the exact sequence

0→ L −1 → FX∗OX̃ ⊗OX L −1 → FX∗B
1
X̃
⊗OX L −1 → 0.

By taking cohomology, we have

0→ H0(X,L −1)→ H0(X,FX∗OX̃ ⊗OX L −1)→ H0(X,FX∗B
1
X̃
⊗OX L −1)

→ H1(X,L −1)→ ···

SinceH0(X,FX∗OX̃ ⊗OX L −1) = 0 andH0(X,FX∗B
1
X̃
⊗OX L −1) ̸= 0, we know thatH1(X,L −1) ̸= 0.

Hence, ifX is a smooth variety of dimension greater than one, then the pair(X,L ) is a counter-example to
the Kodaira vanishing theorem in positive characteristic. It is, however, hard to find such a pair in dimension
greater than one. Meanwhile, regarding in dimension one, we know that almost all smooth projective curves
have pre-Tango structures (see Takeda and Yokogawa [11]). In fact, Raynaud’s famous counter-example
([7]) is a uniruled surface constructed by using a certain pre-Tango structure on a smooth projective curve.

The uniruled surfaces which are constructed similarly to Raynaud’s method are the only known exam-
ples of smooth surfaces which have pre-Tango structures, as far as the author knows. Hence the following
problem seems interesting:

Suppose that a smooth projective surfaceX has a pre-Tango structure. Then isX a uniruled
surface?
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Regrettably, the author does not know what the answer is. Meanwhile, it is known that, if a smooth non-
uniruled projective varietyX has an ample invertible sheafL such thatL p−1⊗OX ω−1

X is ample, then we
haveH1(X,L −1) = 0 (Corollary II.6.3 in Kolĺar [3]). On the other hand, in case of normal projective
varieties, the answer is negative. Indeed, Mumford gave an example of a pre-Tango structure on a normal
projective surface, which is not uniruled ([6]). It seems, however, hard to know whether its desingularization
has a pre-Tango structure or not.

For any smooth proper variety overk which lifts over the ring of Witt-vectors of length 2, the Kodaira
vanishing theorem holds on it. Furthermore, if it is of dimension≤ p, then its spectral sequence of Hodge
to de Rham degenerates atE1 (Deligne and Illusie [1]). So, it has no non-closed global differential 1-
forms. In other words, the existence of non-closed global differential 1-forms is another typical pathological
phenomenon in positive characteristic. Meanwhile, we know that, if a normal projective variety has non-
closed global differential 1-forms, then so does its desingularization. Therefore, it seems appropriate to
investigate normal projective surfaces with pre-Tango structures involving non-closed global differential 1-
forms for the first step. In fact, we often see the normal uniruled surfaces, which are constructed similarly to
Raynaud’s method by using pre-Tango structures on curves, having non-closed global differential 1-forms
(cf. [11]).

On the other hand, it is well-known that we can easily construct surfaces with non-closed global differen-
tial 1-forms by using Mumford’s method, that is, by taking the composite of many Artin-Schreier coverings
of base surfaces ([5]). We, however, hardly know their properties because of its elusive construction. Under
the circumstances, the purpose of the present article is to give explicit and concrete examples of non-uniruled
normal surfaces with pre-Tango structures involving non-closed global differential 1-forms in characteristic
2, 3. Precisely, we first consider a certain quotient of a superspecial abelian surface (the product of two su-
persingular elliptic curves) and take the composite finite covering oftwo suitable Artin-Schreier coverings
of the quotient. On that finite covering, then we find out a pre-Tango structure with required attribute.

2 Case of characteristicp= 2

2.1 A rational vector field on an abelian surface and the quotient

Let E1 be the elliptic curve defined by
y2+y= x3,

which is the unique supersingular elliptic curve in characteristic 2. We then have

z+z2 = w3

near the point at infinity, wherez= y−1 andw= xy−1. Moreover, we have

dy= x2dx and dz= w2dw.

Note that

x+w= x+
x
y

=
x(y2+y)

y2 =
x ·x3

y2 = x2 x2

y2 = x2w2.

We then know

dx= dw and
∂
∂x

=
∂

∂w
.

Take a copỹE of E1 and take the local parametersξ0 andξ∞ corresponding tox andw, respectively. We
then have the same equations

ξ0+ξ∞ = ξ 2
0 ξ 2

∞, dξ0 = dξ∞,
∂

∂ξ0
=

∂
∂ξ∞
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as above. LetA be the productE1× Ẽ and consider thep-closed rational vector field

D =
∂
∂x

+y2 ∂
∂ξi

(i = 0,∞)

onA. We know that

D =
1
z2

(
z2 ∂

∂x
+

∂
∂ξi

)
(i = 0,∞)

and that the divisor ofD is
(D) =−6S,

whereS is the fibre of the point at infinity ofE1, in other words, the curve defined byw= 0 onA. BesidesS
is an integral curve ofD.

Take the quotientX of A by D, i.e., the underlying topological space is the same asA and the structure
sheaf is the sheaf of the germs killed byD (see Rudakov and Shafarevich [8]). SinceD has only divisorial
singularities, we have thatX is a nonsingular surface of Kodaira dimension 1 (see Katsura and Takeda [2]).
Let Γ and Σ denote the images by the quotient morphism ofS (the same as above) andT = {x = 0},
respectively. SinceSis an integral curve ofD andT is not, we have that[k(S) : k(Γ)] = 2 and[k(T) : k(Σ)] =
1. Consider the relative Frobenius morphismsFE : Ẽ → E andF1 : E1 → E(p)

1 over k. We then have two

fibrations: one is an elliptic fibrationψ : X → E(p)
1 induced from the first projectionA→ E1; and the other

is a fibrationϕ : X → E induced from the second projectionA→ Ẽ, each fibre of which is an elliptic curve
with one cusp. By regarding the fibrationψ, we know thatΓ is a fibre of multiplicity 2 and thatΣ is a fibre
of multiplicity 1, and by regarding the fibrationϕ , we know thatΓ is a section and thatΣ is a 2-section.

Let us consider local defining equations ofX. Setηi = ξ 2
i for i = 0,∞ and take the affine open subsets

U0 = E−{η∞ = 0}, U∞ = E−{η0 = 0}. Take, furthermore, the affine open subsets

Vi = ϕ−1(Ui)−Γ, Wi = ϕ−1(Ui)−Σ (i = 0,∞)

of X. Sincey2+y= x3, we know
∂y
∂x

= x2. Hence we have

D(xy+ξi) =
( ∂

∂x
+y2 ∂

∂ξi

)
(xy+ξi) = y+x ·x2+y2 = 0 (i = 0,∞).

Setu= x2, v= y2 andti = xy+ξi for i = 0,∞. We then know thatu,v, ti ∈ k(X), v2+v= u3, t0+ t∞ = η0η∞
and

t2
i = uv+ηi ,

which are local defining equations ofVi for i = 0,∞. Next setr = w2, s= z2. We then know thatr,s∈ k(X),
s+ s2 = r3, s= v−1, u+ r = u2r2 andt2

i s2 = r +ηis2 by simple calculation. Therefore, by settingqi = tis,
we have local defining equations

q2
i = r +ηis

2

of Wi for i = 0,∞. By exterior differentiation onX, we obtain the relations:

du= dr, dr = s2dηi (i = 0,∞).

Let us consider the exact differential 1-formω = du. We then know thatω is regular onVi for i = 0,∞.
Moreover, sinceω = s2dηi for i = 0,∞, we know thatω is regular onWi for i = 0,∞. Therefore, we have
that

ω ∈ H0(X,B1
X).

Sinces(1+s) = r3 andΓ is a fibre of multiplicity 2, we know that(s2) = 12Γ. Hence the divisor ofω is

(ω) = 12Γ
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and that implies an inclusion
OX(12Γ)ω ↪→ B1

X.

By taking its adjoint, we obtain an injection

OX(6Γ) ↪→ FX∗B
1
X̃
.

It is, however,nota pre-Tango structure becauseΓ is not ample.

2.2 A pre-Tango structure on a finite covering of the quotient

Let P0 be the point defined byη0 = 0 on E, and setH = ϕ−1(P0). Consider the finite extension field
k(X)(θ ,ζ ) subjected to

θ 2+η2
0θ = u and ζ 2+η2

0ζ = η0

and take the normalizationσ : Y → X in k(X)(θ ,ζ ). We then know thatY is not a uniruled surface.
Furthermore, we have

η2
0dθ = du, η2

0dζ = dη0

onY. Sinceω = du= s2dη0, we obtain
η2

0dθ = s2η2
0dζ .

By regarding onY, we have
(ω) = σ∗(12Γ+2H).

That induces an inclusion
OY(σ∗(12Γ+2H))ω ↪→ B1

Y.

By taking its adjoint, we obtain an injection

OY(σ∗(6Γ+H)) ↪→ FY∗B
1
Ỹ
.

Moreover, it is apre-Tango structurebecause 6Γ+H is ample onX and so isσ∗(6Γ+H) onY.
Consider the differential 1-formsdθ (which is exact) andt0dθ (which is not closed) onY. We have

dθ = s2dζ and t0dθ = q0sdζ .

Sincedθ andt0dθ are regular onσ−1(V0), ands2dζ andq0sdζ are so onσ−1(W0), we have

dθ , t0dθ ∈ H0(σ−1(ϕ−1(U0)),Ω1
Y) = H0(U0,ϕ∗σ∗Ω1

Y).

On the other hand, sinceω = du is regular onX, we have thatdu is regular onσ−1(ϕ−1(U∞)). Hence we
obtain that

du∈ H0(σ−1(ϕ−1(U∞)),B
1
Y) = H0(U∞,ϕ∗σ∗B

1
Y).

Next considert∞ω. We then know thatt∞ω = t∞du is regular onV∞. Besides, sincet∞du= q∞sdη∞, we
know thatt∞ω is regular onW∞. By regarding onY, we have

t∞du∈ H0(σ−1(ϕ−1(U∞)),Ω1
Y) = H0(U∞,ϕ∗σ∗Ω1

Y).

Now let us considerOE-submodulesR andS of ϕ∗σ∗Ω1
Y such that

R|U0 = OE|U0dθ , R|U∞ = OE|U∞du,

S |U0 = OE|U0dθ +OE|U0t0dθ , S |U∞ = OE|U∞du+OE|U∞t∞du.
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Note that the sections ofS which are not contained inR, are non-closed differential 1-forms. Meanwhile,
sinceη2

0dθ = du, we know thatR ∼= OE(2P0). Moreover, sincet0+ t∞ = η0η∞, we have

η2
0t0dθ = t∞du+η0η∞du

and so,

(dθ , t0dθ) = (du, t∞du)


1

η2
0

η∞

η0

0
1

η2
0

 .

Therefore, we obtain a short exact sequence

0→ R → S → OE(2P0)→ 0.

SinceH1(E,R)∼= H1(E,OE(2P0)) = 0 andH0(E,OE(2P0)) ̸= 0, we knowH0(E,R)⫋ H0(E,S ). Hence
we conclude thatY has non-closed global differential1-forms.

3 Case of characteristicp= 3

3.1 A rational vector field on an abelian surface and the quotient

Let E1 be the elliptic curve defined by
y2 = x3−x,

which is the unique supersingular elliptic curve in characteristic 3. We then have

z= w3−wz2

near the point at infinity, wherez= y−1 andw= xy−1. Moreover, we know 2ydy=−dx and so

dy=
dx
y
,

which is an exact global differential 1-form. Set∆ = y
∂
∂x

. We then have that∆ is a regular vector field on

E1 such that∆3 = 0. Note that

z= w3−wz2

z(1+wz) = w3

z(
1
w3 +

1
w3 wz) = 1

1
w3 +

1
w3 wz= y

1
w3 +

1
w3 w

w3

1+wz
= y

1
w3 +

w
1+wz

= y.

We then obtain that
dy= d

w
1+wz

.
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Meanwhile, we know thaty (resp.w/(1+wz)) is a local parameter near the point overx= 0 (resp.x= ∞).
Take a copyẼ of E1 and take the local parametersξ0 and ξ∞ corresponding toy and w/(1+wz),

respectively. We then have

dξ0 = dξ∞ and
∂

∂ξ0
=

∂
∂ξ∞

.

Let A be the productE1× Ẽ and consider thep-closed rational vector field

D = ∆−x3 ∂
∂ξi

(i = 0,∞)

onA. We know that

D =
1
z2

(
z2∆− (1+wz)

∂
∂ξi

)
(i = 0,∞)

and that the divisor ofD is
(D) =−6S,

whereS is the fibre of the point at infinity ofE1, in other words, the curve defined byw= 0 onA. BesidesS
is an integral curve ofD.

Take the quotientX of A by D, i.e., the underlying topological space is the same asA and the structure
sheaf is the sheaf of the germs killed byD (see [8]). SinceD has only divisorial singularities, we have that
X is a nonsingular surface of Kodaira dimension 1 (see [2]). LetΓ andΣ denote the images by the quotient
morphism ofS (the same as above) andT = {x = 0}, respectively. SinceS is an integral curve ofD and
T is not, we have that[k(S) : k(Γ)] = 3 and[k(T) : k(Σ)] = 1. Consider the relative Frobenius morphisms

FE : Ẽ → E andF1 : E1 → E(p)
1 overk. We then have two fibrations: one is an elliptic fibrationψ : X → E(p)

1
induced from the first projectionA → E1; and the other is a fibrationϕ : X → E induced from the second
projectionA→ Ẽ, each fibre of which is an elliptic curve with one cusp. By regarding the fibrationψ, we
know thatΓ is a fibre of multiplicity 3 and thatΣ is a fibre of multiplicity 1, and by regarding the fibration
ϕ , we know thatΓ is a section and thatΣ is a 3-section.

Let us consider local defining equations ofX. Setηi = ξ 3
i for i = 0,∞ and take the affine open subsets

U0 = E−{η∞ = 0}, U∞ = E−{η0 = 0}. Take, furthermore, the affine open subsets

Vi = ϕ−1(Ui)−Γ, Wi = ϕ−1(Ui)−Σ (i = 0,∞)

of X. Since∆(y) = 1 and∆(x) = y, we obtain

D(xy+ξi) =
(

∆−x3 ∂
∂ξi

)
(xy+ξi) = y2+x−x3 = 0 (i = 0,∞).

Setu= x3, v= y3 andti = xy+ξi for i = 0,∞. We then know thatu,v, ti ∈ k(X), v2 = u3−u and

t3
i = uv+ηi ,

which are local defining equations ofVi for i = 0,∞. By exterior differentiation onX, we obtain the relations:

vdv= du, u3dv=−dηi (i = 0,∞).

Next setr = w3, s= z3. We then know thatr,s∈ k(X), s= r3− rs2, s= v−1, r = uv−1 andt3
i s3 = rs+ηis3.

Therefore, by settingqi = tis, we have local defining equations

q3
i = rs+ηis

3

of Wi for i = 0,∞.
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Let us consider the exact differential 1-formω = dv. We then know thatω is regular onVi for i = 0,∞.

Moreover, by simple computation, we haveω =− s2

1+ rs
dηi for i = 0,∞. Hence we know thatω is regular

onWi for i = 0,∞. Therefore, we have that

ω ∈ H0(X,B1
X).

Sinces(1+ rs) = r3 andΓ is a fibre of multiplicity 3, we know that(s2) = 18Γ. Hence the divisor ofω is

(ω) = 18Γ

and that implies an inclusion
OX(18Γ)ω ↪→ B1

X.

By taking its adjoint, we obtain an injection

OX(6Γ) ↪→ FX∗B
1
X̃
.

It is, however,nota pre-Tango structure becauseΓ is not ample.

3.2 A pre-Tango structure on a finite covering of the quotient

Let P0 be the point defined byη0 = 0 on E, and setH = ϕ−1(P0). Consider the finite extension field
k(X)(θ ,ζ ) subjected to

θ 3−η3
0θ = v and ζ 3−η3

0ζ = η0

and take the normalizationσ : Y → X in k(X)(θ ,ζ ). We then know thatY is not a uniruled surface.
Furthermore, we have

−η3
0dθ = dv, −η3

0dζ = dη0

onY. Sinceω = dv=− s2

1+ rs
dη0, we obtain

η3
0dθ =−

s2η3
0

1+ rs
dζ .

By regarding onY, we have
(ω) = σ∗(18Γ+3H).

That induces an inclusion
OY(σ∗(18Γ+3H))ω ↪→ B1

Y.

By taking its adjoint, we obtain an injection

OY(σ∗(6Γ+H)) ↪→ FY∗B
1
Ỹ
.

Moreover, it is apre-Tango structurebecause 6Γ+H is ample onX and so isσ∗(6Γ+H) onY.
Consider the differential 1-formsdθ (which is exact) andt0dθ (which is not closed) onY. We have

dθ =− s2

1+ rs
dζ and t0dθ =− q0s

1+ rs
dζ .

Sincedθ , t0dθ are regular onσ−1(V0) and since
s2

1+ rs
dζ ,

q0s
1+ rs

dζ are so onσ−1(W0), we have

dθ , t0dθ ∈ H0(σ−1(ϕ−1(U0)),Ω1
Y) = H0(U0,ϕ∗σ∗Ω1

Y).
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On the other hand, sinceω = dv is regular onX, we have thatdv is regular onσ−1(ϕ−1(U∞)). Hence we
obtain that

dv∈ H0(σ−1(ϕ−1(U∞)),B
1
Y) = H0(U∞,ϕ∗σ∗B

1
Y).

Next considert∞ω. We then know thatt∞ω = t∞dv is regular onV∞. Besides, sincet∞dv= − q∞s
1+ rs

dη∞,

we know thatt∞ω is regular onW∞. By regarding onY, we have

t∞dv∈ H0(σ−1(ϕ−1(U∞)),Ω1
Y) = H0(U∞,ϕ∗σ∗Ω1

Y).

Now let us considerOE-submodulesR andS of ϕ∗σ∗Ω1
Y such that

R|U0 = OE|U0dθ , R|U∞ = OE|U∞dv,

S |U0 = OE|U0dθ +OE|U0t0dθ , S |U∞ = OE|U∞dv+OE|U∞t∞dv.

Note that the sections ofS which are not contained inR, are non-closed differential 1-forms. Meanwhile,
since−η3

0dθ = dv, we know thatR ∼= OE(3P0). Recall thatξ0, ξ∞ are corresponding toy, w/(1+wz),
respectively. Therefore, the differenceξ0− ξ∞ is corresponding to 1/w3. Denote it byb0∞. We then have
thatb0∞ is a section inOE(U0∩U∞). Moreover, sinceti = xy+ξi for i = 0,∞, we know thatt0− t∞ = b0∞.
Hence we have

−η3
0t0dθ = t∞dv+b0∞dv

and so,

(−dθ ,−t0dθ) = (dv, t∞dv)


1

η3
0

b0∞

η3
0

0
1

η3
0

 .

Therefore, we obtain a short exact sequence

0→ R → S → OE(3P0)→ 0.

SinceH1(E,R)∼= H1(E,OE(3P0)) = 0 andH0(E,OE(3P0)) ̸= 0, we knowH0(E,R)⫋ H0(E,S ). Hence
we conclude thatY has non-closed global differential1-forms.
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