Examples of non-uniruled surfaces with pre-Tango structures
involving non-closed global differential 1-forms
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Abstract

The pre-Tango structure is an ample invertible sheaf of locally exact differentials on a variety in
positive characteristic, which often brings various sorts of pathological phenomena. We, however, know
few examples of pre-Tango structures on non-uniruled varieties. In the present article, we explicitly
construct non-uniruled surfaces with pre-Tango structures involving non-closed global differential 1-
forms.

1 Introduction

Let X be a projective algebraic variety over an algebraically closed kelficharacteristigp > 0 and let
Fx : X — X be the relative Frobenius morphism okeMe then have a short exact sequence

0— Ox — Fx.O% — Fx. %5 — 0,

Where%’}( is the first sheaf of coboundaries of the de Rham compleX.oSuppose that there exists an

ample invertible subshea® of &*%§ provided thatFx*%’)lz is regarded as aftx-module. We call¥Z a
pre-Tango structurg¢see Takeda [10], see also Mukai [4]). Let us consider the exact sequence

0.2 1= .0z @0 L1 — &*%% Ry L= 0.
By taking cohomology, we have

0— HOX,.271) = HOX,Fx. 05 @6y L) = HOX, Fx B @ L7 1)
—HX, 21—

Since HO(X, Fx.0x @gy £ 1) = 0 andHO(X,Fx. 25 @6 £ 1) # 0, we know thatH*(X,#~1) # 0.

Hence, ifX is a smooth variety of dimension greater than one, then thg)}ai¥’) is a counter-example to

the Kodaira vanishing theorem in positive characteristic. It is, however, hard to find such a pair in dimension

greater than one. Meanwhile, regarding in dimension one, we know that almost all smooth projective curves

have pre-Tango structures (see Takeda and Yokogawa [11]). In fact, Raynaud's famous counter-example

([7]) is a uniruled surface constructed by using a certain pre-Tango structure on a smooth projective curve.
The uniruled surfaces which are constructed similarly to Raynaud’s method are the only known exam-

ples of smooth surfaces which have pre-Tango structures, as far as the author knows. Hence the following

problem seems interesting:

Suppose that a smooth projective surfacéas a pre-Tango structure. ThenXsa uniruled
surface?
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Regrettably, the author does not know what the answer is. Meanwhile, it is known that, if a smooth non-
uniruled projective varietX has an ample invertible she&f such thatZP-!®, w;l is ample, then we
haveH!(X,.#~1) = 0 (Corollary 11.6.3 in Kolér [3]). On the other hand, in case of normal projective
varieties, the answer is negative. Indeed, Mumford gave an example of a pre-Tango structure on a normal
projective surface, which is not uniruled ([6]). It seems, however, hard to know whether its desingularization
has a pre-Tango structure or not.

For any smooth proper variety oviewhich lifts over the ring of Witt-vectors of length 2, the Kodaira
vanishing theorem holds on it. Furthermore, if it is of dimensiop, then its spectral sequence of Hodge
to de Rham degenerates &t (Deligne and lllusie [1]). So, it has no non-closed global differential 1-
forms. In other words, the existence of non-closed global differential 1-forms is another typical pathological
phenomenon in positive characteristic. Meanwhile, we know that, if a normal projective variety has non-
closed global differential 1-forms, then so does its desingularization. Therefore, it seems appropriate to
investigate normal projective surfaces with pre-Tango structures involving non-closed global differential 1-
forms for the first step. In fact, we often see the normal uniruled surfaces, which are constructed similarly to
Raynaud’s method by using pre-Tango structures on curves, having non-closed global differential 1-forms
(cf. [11]).

On the other hand, itis well-known that we can easily construct surfaces with non-closed global differen-
tial 1-forms by using Mumford’s method, that is, by taking the composite of many Artin-Schreier coverings
of base surfaces ([5]). We, however, hardly know their properties because of its elusive construction. Under
the circumstances, the purpose of the present article is to give explicit and concrete examples of non-uniruled
normal surfaces with pre-Tango structures involving non-closed global differential 1-forms in characteristic
2, 3. Precisely, we first consider a certain quotient of a superspecial abelian surface (the product of two su-
persingular elliptic curves) and take the composite finite coverirtgvofuitable Artin-Schreier coverings
of the quotient. On that finite covering, then we find out a pre-Tango structure with required attribute.

2 Case of characteristicp = 2

2.1 Avrational vector field on an abelian surface and the quotient

Let E; be the elliptic curve defined by

y+y=x,
which is the unique supersingular elliptic curve in characteristic 2. We then have
z+Z2=w?

near the point at infinity, where= y~! andw = xy 1. Moreover, we have
dy=x%dx and dz=w’dw

Note that ) 5 )
xrw=xt X = XV 2+y) = X'; :xzizzxzvvz.
y y y y

We then know
7] d

dx=d d —=—.
Xx=dw an X aw
Take a copyE of E; and take the local parametesandé., corresponding ta andw, respectively. We
then have the same equations

__g2¢g2 _ =
EO"‘Emffofooy dEO*dEOCH 050 - ano



as above. Lef be the producE; x E and consider the-closed rational vector field

7] 7] .
D—R-l- TEI (i=0,00)
onA. We know that 1 3 3
D=5 (F5xtag) (=0

and that the divisor oD is

(D)= —6S
whereSis the fibre of the point at infinity oE;, in other words, the curve defined tay= 0 onA. BesidesS
is an integral curve ob.

Take the quotienk of A by D, i.e., the underlying topological space is the sam@é asad the structure
sheaf is the sheaf of the germs killed Dy(see Rudakov and Shafarevich [8]). Sirlzdas only divisorial
singularities, we have that is a nonsingular surface of Kodaira dimension 1 (see Katsura and Takeda [2]).
Let ' and Z denote the images by the quotient morphismSathe same as above) affd= {x = 0},
respectively. Sinc8is an integral curve db andT is not, we have thdk(S) : k(I')] =2 and[k(T) : k(X)] =
1. Consider the relative Frobenius morphiskas. E - EandF:E; — Eip) overk. We then have two

fibrations: one is an elliptic fibratiogy : X — Eip) induced from the first projectioA — E;; and the other
is a fibration¢ : X — E induced from the second projectidn— E, each fibre of which is an elliptic curve
with one cusp. By regarding the fibratighn we know that™ is a fibre of multiplicity 2 and thak is a fibre
of multiplicity 1, and by regarding the fibratiah, we know that” is a section and that is a 2-section.

Let us consider local defining equationsXf Setn; = &2 for i = 0, and take the affine open subsets
Uo = E — {N» = 0}, Uw = E — {no = 0}. Take, furthermore, the affine open subsets

Vi=¢{U)-T, W=¢1(U)-Z (i=0,0)

of X. Sincey? +y = x3, we knowz;/ = x%. Hence we have
P P , .
DOy+&) = (- +y27€i)(xy+a) —y+x% 4+ =0 (i=0,0).

Setu = x?, v=y? andt; = xy+ & fori = 0,00. We then know that, v,t; € k(X), V2 +V = U3, tg +tw = NoNe
and
t7 = uv+n,

which are local defining equationsgffor i = 0,00. Next setr = w?, s= z2. We then know that,s € k(X),
s+ =r3s=v1 u+tr=ur?andt?s =r +n;s by simple calculation. Therefore, by settigg= t;s,
we have local defining equations

o =r+ns

of W for i = 0, . By exterior differentiation orx, we obtain the relations:
du=dr, dr=s%dn; (i=0,c0).

Let us consider the exact differential 1-fomn= du. We then know thatv is regular orV; for i = 0, co.
Moreover, sincew = s2dn); for i = 0,0, we know thatw is regular o for i = 0,. Therefore, we have
that

we HO(X, 2%).

Sinces(1+s) = r2 andr is a fibre of multiplicity 2, we know thats?) = 12I. Hence the divisor o is
(w) =121
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and that implies an inclusion
Ox (12N w — B

By taking its adjoint, we obtain an injection
Ox (6) — Fx. .

It is, howevernota pre-Tango structure becauses not ample.

2.2 A pre-Tango structure on a finite covering of the quotient

Let Py be the point defined byjo = 0 onE, and setH = ¢ ~1(P). Consider the finite extension field
k(X)(8,{) subjected to
62+n20=u and ¢%+n3l=no

and take the normalizatiog : Y — X in k(X)(6,{). We then know thalY is not a uniruled surface
Furthermore, we have
ngde =du, ngdZ =dno

onY. Sincew = du= s?dno, we obtain
ngde = s’ngdd.

By regarding orY, we have
(w) = 0" (12 +2H).

That induces an inclusion
Oy (0% (127 +2H))w — .

By taking its adjoint, we obtain an injection
Oy(0* (67 +H)) — Fy, 25

Moreover, it is gore-Tango structuréecause b+ H is ample onX and so iso* (6l +H) onY.
Consider the differential 1-forn@6 (which is exact) anthd6 (which is not closed) ol. We have

d6 =<sd¢ and tod6 = gosdl.
Sinced@ andtyd8 are regular oo —(Vp), ands*d andgosd{ are so oro~1(Wp), we have
d6, tod6 € H(o~ (¢~ (Up)), Qy) = HO(Uo, 9. 0.QF).

On the other hand, sinae = duis regular onX, we have thatu s regular ono (¢ ~1(U.,)). Hence we
obtain that
due Ho(o (¢ (Un)), 2Y) = H(Uwo, §.0.%7).

Next considet,w. We then know that.w = t.du is regular onv,,. Besides, sincé,du= QoSdN., we
know thatt. w is regular on\,,. By regarding orY, we have

toduec Ho (0719 (Ua)), QY) = HO(U.,,, ¢.0.QY).

Now let us considets-submodules? and.¥ of ¢*G*Q$ such that

R\|u, = Ok|u,d0, Z\u.,, = Og|u,du,

y‘Uo = ﬁE|Uod6+ ﬁE|Uot0d67 y!um = ﬁE|deU—|— ﬁE‘thoodU.



Note that the sections o which are not contained i, are non-closed differential 1-forms. Meanwhile,
sincen3dd = du, we know thatZ = 0k (2Py). Moreover, sincép + tw = NoMew, We have

and so,
1 Noo
'75 No
(d6,tpd8) = (du,t.du)
1
0 —
No

Therefore, we obtain a short exact sequence
0% — . — Oe(2P) — 0.

SinceH(E, %) = HY(E, 0g(2R)) = 0 andHO(E, 0 (2Ry)) # 0, we knowH?(E, %) S H(E,.#). Hence
we conclude thaY has non-closed global differentiaiforms

3 Case of characteristicp = 3

3.1 Arrational vector field on an abelian surface and the quotient

Let E; be the elliptic curve defined by
y2 = X3 - X7

which is the unique supersingular elliptic curve in characteristic 3. We then have
z=w?—wZ
near the point at infinity, where= y~! andw = xy~!. Moreover, we know gdy= —dxand so

dx
dy: N,
y
which is an exact global differential 1-form. Set= yi. We then have thdk is a regular vector field on

X
E; such thatA® = 0. Note that

We then obtain that




Meanwhile, we know thay (resp.w/(1+wz)) is a local parameter near the point oxet O (resp.x = ).
Take a copyE of E; and take the local parametefs and &., corresponding toy andw/(1+ wz),

respectively. We then have

0 fd
dég=dé&, and — = —.
éo=1d¢ 9%, ~ 9L,

Let A be the producE; x E and consider the-closed rational vector field

o
D:A—x30—a (i=0,0)

onA. We know that

and that the divisor ob is

whereSis the fibre of the point at infinity oE;, in other words, the curve defined tay= 0 onA. BesidesS
is an integral curve ob.

Take the quotienX of A by D, i.e., the underlying topological space is the sam@ aad the structure
sheaf is the sheaf of the germs killed Dy(see [8]). Since has only divisorial singularities, we have that
X is a nonsingular surface of Kodaira dimension 1 (see [2]).lLahdZ denote the images by the quotient
morphism ofS (the same as above) aild= {x = 0}, respectively. Sinc&is an integral curve ob and
T is not, we have thak(S) : k(I')] = 3 and[k(T) : k(Z)] = 1. Consider the relative Frobenius morphisms
Fe: E—-E andF; i E; — Eip) overk. We then have two fibrations: one is an elliptic fibratipn X — Eip)
induced from the first projectioA — E;; and the other is a fibratiogh : X — E induced from the second
projectionA — E, each fibre of which is an elliptic curve with one cusp. By regarding the fibrafione
know thatr is a fibre of multiplicity 3 and thak is a fibre of multiplicity 1, and by regarding the fibration
¢, we know that" is a section and that is a 3-section.

Let us consider local defining equationsXf Setn; = Ei3 for i = 0, and take the affine open subsets
Uo = E — {N» = 0}, Uw = E — {no = 0}. Take, furthermore, the affine open subsets

Vi=¢{U)-T, W=¢1(U)-Z (i=0,0)

of X. SinceA(y) = 1 andA(x) =y, we obtain

D(xy+§&) = (A—ija)(X)Hfi) =y +x-x=0 (i=0,).

Setu=x3, v=y3 andt; = xy+ & for i = 0,0. We then know thai, v,t; € k(X), v = u® —uand
t? = uv-+n;,
which are local defining equations\dffor i = 0, c. By exterior differentiation otX, we obtain the relations:
vdv=du, wdv=—dn; (i=0,).

Next setr = w3, s=Z2. We then know that,;s€ k(X), s=r3—rs?, s=v 1 r =uv ! andt’s® = rs+n;s’.
Therefore, by setting; = tjs, we have local defining equations

o =rs+ns’

of W for i = 0, .



Let us consider the exact differential 1-fomn= dv. We then know thato is regular onV; for i = 0, c.

: . S . :
Moreover, by simple computation, we haswe= —mdni fori =0,0. Hence we know thab is regular

onW for i = 0,c. Therefore, we have that
we HO(X, 2%).
Sinces(1+rs) = r2 andr is a fibre of multiplicity 3, we know thats?) = 18I". Hence the divisor ofv is
(w) = 18"

and that implies an inclusion
Ox (187w — B

By taking its adjoint, we obtain an injection
Ox (6) — Fx. 5.

It is, howevernota pre-Tango structure becausés not ample.

3.2 A pre-Tango structure on a finite covering of the quotient

Let Py be the point defined by = 0 onE, and setH = ¢ ~1(Ry). Consider the finite extension field
k(X)(8, ) subjected to
63-nd6=v and *-nil=no

and take the normalizatioo : Y — X in k(X)(6,{). We then know thalY is not a uniruled surface
Furthermore, we have
—ngde =dv.  —nddZ = dno

onY. Sincew =dv= —idno, we obtain
1+rs

£nd

349 = —
M40 = =771

d¢.
By regarding orY, we have
(w) = 0" (18 +3H).

That induces an inclusion
Oy (0% (187 +3H))w — L.

By taking its adjoint, we obtain an injection
Oy(0* (67 +H)) — Fy, 25
Moreover, it is gore-Tango structurdecause b+ H is ample onX and so iso* (6" +H) onY.

Consider the differential 1-formd6 (which is exact) antbd6 (which is not closed) ol. We have

dez—idz and tod6 — — 3%

dc.
1+rs 1+rs ¢

d{ are so oro—1(Wp), we have

. . &£ oS
-1
Sinced#, tod0 are regular oo —+(Vp) and smcemdz, Tirs

d6, tod6 € HO(a (¢ ~(Up)), Q%) = HO(Ug, 9. 0,Q%).
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On the other hand, sinae = dvis regular onX, we have thatlvis regular ono~1(¢~*(U.)). Hence we
obtain that

dve Ho(o (¢ H(Un)), By) = HO(Uar, $.0.%7).
OS

Next considet.,w. We then know that., w = t.dv is regular ornv,,. Besides, sincg,dv= — Tors

we know that.w is regular on\.,. By regarding orY, we have

dNe,

tdve HO (071 (¢ 1 (Ux)),QF) = HO(Uw, 9.0.Q3).

Now let us considete-submodules? and.# of ¢.0,.Q% such that
Z|u, = Ok|u,d0, Z\v., = Olu.dV,
vy = OE|u,d6 + OF |u,todB, 7|0 = Og|u.,dV+ Og |u, todV.

Note that the sections o which are not contained i#?, are non-closed differential 1-forms. Meanwhile,
since—n3d6 = dv, we know thatZ = 0g(3R). Recall thatéo, &.. are corresponding tg, w/(1+ wz),
respectively. Therefore, the differenég— & is corresponding to M. Denote it bybg.,. We then have
thatboe is a section i¥g (UpNUs ). Moreover, sinceéy = xy+ & for i = 0,00, we know thaty — te = Doe.
Hence we have

—ndtodO = twdVv+ boedv

and so,
1 bgo
n§ ng
(—d6, —tpdB) = (dv;t..dV)
1
0 —
No

Therefore, we obtain a short exact sequence
0—>%— ./ — Og(3R) — 0.
SinceH(E,#) = HY(E, 0&(3Ry)) = 0 andH°(E, O (3Ry)) # 0, we knowH®(E, #Z) S H°(E,.#). Hence
we conclude thaY has non-closed global differentififorms
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