
Groups of Russell type and Tango structures

Yoshifumi TAKEDA

Abstract. The group of Russell type is a form of the additive group and the
Tango structure is a certain invertible sheaf of locally exact differentials on a
curve in positive characteristic. By using the notion of Tango structure, we can

construct a group of Russell type over a projective curve, whose completion
induces some pathological phenomena in positive characteristic. We consider
the locus of curves which have such Tango structures, in the moduli space of
curves.

1. Groups of Russell type

Let k be a field of positive characteristic which is not perfect. Take an element
a in k such that a ̸∈ kp. Consider a scheme Xk = Spec k[x, y] subjected to yp =
x+ axp. We know that Xk is a k-group scheme with group structures

k[x, y] → k[x, y]⊗k k[x, y]
x 7→ x⊗ 1 + 1⊗ x
y 7→ y ⊗ 1 + 1⊗ y

and so on.
Take an extension field k′ = k(a1/p) and consider the base extension

Xk′ = Xk ⊗k k′.

We then obtain that Xk′ is isomorphic to the additive group Gak′ as a k′-group
scheme. Indeed, we can rewrite

yp = x+ axp as (y − a1/px)p = x,

so we have k′[x, y] = k′[t], where t = y − a1/px. Namely, we have a diagram

Gak′ ∼= Xk′ → Xk

↓ □ ↓

k′ → k,

which is compatible with the group structures.

The following celebrated theorem was given by Russell in 1970:
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Theorem 1.1 ([8]). Let X be a k-group scheme such that X ⊗k K ∼= GaK

for some field K ⊃ k. We then have that X is isomorphic to a subgroup scheme
Spec k[x, y]/I of G2

ak = Spec k[x, y], where I = (yp
n − a0x− a1x

p − · · · − amxpm

)
with a0 ̸= 0 and m,n ∈ N.

We call such a group scheme a group of Russell type.

2. Tango structures

Let C be a nonsingular projective curve of genus g > 1 over an algebraically
closed field k. For the sake of simplicity, we assume that the characteristic of k is
greater than 2, from now on.

Consider the relative Frobenius morphism F : C̃ → C over k and let B be the
quotient F∗OC̃/OC . In other words, B is the direct image of the first coboundary

of the de Rham complex F∗B
1(Ω•

C̃
). This is a locally free OC-module of rank p−1.

Definition 2.1. We call an invertible subsheaf L ⊂ B a Tango structure if
Lp ∼= ΩC .

Now we suppose that we have a Tango structure L on C. Suppose, furthermore,
that there exists an invertible sheaf N such that N p−1 ∼= L. We then have an
extension

0 → OC → E → N p−1 → 0
∥ ∩ ∩

0 → OC → F∗OC̃ → B → 0.

Take an affine open covering {Ui}i∈I , local generators 1 and qi of E subjected to

qi = bij 1 + dp−1
ij qj ,

where {dij}i,j∈I are transition functions of N and where{(
1 bij
0 dp−1

ij

)}
i,j∈I

are transition matrices of E .
Set ai = qpi . We know that ai = bpij + d

p(p−1)
ij aj and ai is a local section of OC .

Consider a group of Russell type

Xi = SpecOC(Ui)[xi, yi]/(y
p
i − xi − aix

p
i )

over each Ui.
Let us glue the Xi’s together under the relations

xi = d−p
ij xj , yi = bijd

−p
ij xj + d−1

ij yj .

Note that we have

ypi − xi − aix
p
i = (bijd

−p
ij xj + d−1

ij yj)
p − d−p

ij xj − (bpij + d
p(p−1)
ij aj)d

−p2

ij xp
j

= bpijd
−p2

ij xp
j + d−p

ij ypj − d−p
ij xj − bpijd

−p2

ij xp
j − d−p

ij ajx
p
j

= d−p
ij (ypj − xj − ajx

p
j ),

which is compatible with the group structures. Thus we obtain a group of Russell
type X over C.

Indeed, over C̃, we can rewrite

ypi = xi + aix
p
i as (yi − qixi)

p = xi.
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Set ti = yi − qixi. We then obtain ti = d−1
ij tj and

X ×C C̃|Ui
∼= SpecOC̃(Ui)[ti].

Hence, by considering the vector bundle

SpecSymm(F ∗N−1) → C̃

without scalar-multiplication, we have

SpecSymm(F ∗N−1) ∼= X ×C C̃ −→ X

↘ ↓ □ ↓

C̃ −→ C.
F

For more generalized discussions on groups of Russell type over a curve, see
[13].

3. Completion of X

Consider the vector bundle

SpecSymm(N−p) → C.

We have a diagram

SpecSymm(F ∗N−1) → X → SpecSymm(N−p)

↓ □ ↓ ↙

C̃ → C.

The composite of the two top morphisms is the relative Frobenius morphism over
k. Consider, furthermore, the P1-bundles

ProjSymm(N−p ⊕OC) → C,

ProjSymm(F ∗N−1 ⊕OC̃) → C̃,

which are completions of SpecSymm(N−p) → C and of SpecSymm(F ∗N−1) → C̃,
respectively.

Take the normalization Y of ProjSymm(N−p ⊕ OC) in k(X). We then know
that Y is a completion of X and obtain a diagram

ProjSymm(F ∗N−1 ⊕OC̃) → Y → ProjSymm(N−p ⊕OC)

∪ ∪ ∪

SpecSymm(F ∗N−1) → X → SpecSymm(N−p)

↓ □ ↓ ↙

C̃ → C.

The composite of the two top morphisms is the relative Frobenius morphism over
k.
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Here the following theorem, originally given by Raynaud[7], holds:

Theorem 3.1. In the same notation and under the same assumption as above,
we have that the completion Y is a minimal nonsingular projective surface having a
fibration such that each fibre is a rational curve with one cusp of type up+vp−1 = 0.
Moreover,

(1) If p = 3, then Y is a quasi-elliptic surface of κ = 1.
(2) If p > 3, then Y is a surface of general type.

In any case, Y gives a counter-example to the Kodaira vanishing theorem in positive
characteristic.

For the proof and more detailed discussions on the completion Y , see [11, 13].

Needless to say, Y cannot be lifted over the ring of Witt-vectors of length
two(see for example [1]). In our case, furthermore, it holds

Theorem 3.2 (Russell, Ganong, Kurke, W. Lang, Mukai, . . . ). Retain the
same notation and assumption as above, we have

H0(Y,ΘY ) = H0(C,N ),

where ΘY is the tangent sheaf of Y .

For the proof, see [2, 3, 4, 6, 9]. See also [12].

These theorems imply that, if H0(C,N ) ̸= 0 and p > 3, then Y is a surface of
general type with nontrivial vector fields. On the other hand, it is well-known that
the automorphism groups of varieties of general type are finite(see for example [5]).
Hence we know that the automorphism group scheme of Y is not reduced.

Example 3.3. Consider the plane curve defined by the equation

C : yp(p−1) − y = xp(p−1)−1

in p > 3. We then have a Tango structure

L ∼= OC((p− 1)(p2 − p− 3)P∞)

arising from the exact form dx whose divisor

(dx) = p(p− 1)(p2 − p− 3)P∞,

where P∞ is the point at infinity. Let N = OC((p
2 − p− 3)P∞). We then obtain

N p−1 ∼= L, H0(C,N ) ̸= 0.

Hence we get a nonsingular projective surface of general type with nontrivial vector
fields.

Thus we obtain a really pathological surface in positive characteristic. In the
circumstances, the following problems seem interesting:

Are such surfaces really exceptional ones?
Do they form discrete points in the moduli space?

It is, however, likely difficult to solve these problem straightforward, because of the
difficulty of the moduli space of surfaces. So, for the first step, let us consider the
following problems:

Are the curves having such Tango structures
really exceptional ones?

Do they form discrete points in the moduli space?
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4. Main theorem

In this last section, we shall give a negative answer to the latter problems.
Consider the following locus in the moduli space Mg of curves of genus g > 1 such
that p(p− 1) | 2g − 2 with p > 3:

Tg =
{
C ∈ Mg

∣∣ C has a Tango structure N p−1 with H0(C,N ) ̸= 0
}
.

The main theorem is the following:

Theorem 4.1 (cf. [14]). The locus Tg contains a variety of dim ≥ g−1 provided
p ≡ 3 (mod 4).

Proof. Consider the subvariety

Hg = {C ∈ Mg | C is a hyperelliptic curve }.
We have a rational mapping

A2g−1 → Hg∪
|

∪
|

(a1, . . . , a2g−1) 7→ y2 = x(x− 1)(x− a1) · · · (x− a2g−1).

Let C be an image, that is a hyperelliptic curve, and let c11 . . . c1g
...

...
cg1 . . . cgg


be the Hasse-Witt matrix of C with respect to{

dx

y
, . . . ,

xg−1dx

y

}
.

Note that each entry is a polynomial in a1, · · · , a2g−1 (see for example [17]).
Consider the subvariety S of A2g−1 defined by c11 = · · · = cg1 = 0, i.e., the first
column is zero. We then know that dimS ≥ g − 1 if S is not empty. Let T be the
image of S in Hg.

A2g−1 → Hg

∪ ∪

S −→ T

Since the mapping A2g−1 → Hg is induced from an action of a certain finite group,
we also know that dimT ≥ g − 1 if T is not empty. Moreover, we have that

C
( dx

y

)
= 0

on every curve in T , where C is the Cartier operator(see for example [10]). In other
words, the form dx/y is exact.

On the other hand, dx/y induces the divisor( dx
y

)
= (2g − 2)P∞
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and 2g − 2 = np(p − 1) with n ∈ N. Therefore, from this exact form, we obtain a
Tango structure

OC(nP∞)p−1 ↪→ B with H0(OC(nP∞)) ̸= 0.

So we know that T is contained in the locus Tg.
Now we have only to verify that T is not empty. Consider the hyperelliptic

curve defined by

y2 = xd − x

with d = 2g + 1, 2g − 2 = np(p− 1), n ∈ N. We can then compute as follows:

y C
( dx

y

)
= C(yp−1dx) = C((xd − x)

p−1
2 dx).

In (xd − x)
p−1
2 = x

p−1
2 (xd−1 − 1)

p−1
2 , only terms

x
p−1
2 , x

p−1
2 +d−1, x

p−1
2 +2(d−1), . . . , xd p−1

2

appear. More precisely, since d = 3 + np(p− 1), we know that only terms

x
p−1
2 , x

p−1
2 +2+np(p−1), x

p−1
2 +2·2+2np(p−1), . . . , x

p−1
2 + p−1

2 2+ p−1
2 np(p−1)

appear. Note that

p− 1

2
< p− 1, p <

p− 1

2
+

p− 1

2
2 < 2p− 1.

We can verify that C(dx/y) ̸= 0 if and only if there exists an integer l such that

p− 1

2
+ 2l = p− 1 with 1 ≤ l ≤ p− 1

2
,

i.e., 4l = p− 1. In other words,

C
( dx

y

)
̸= 0 if and only if 4 | p− 1.

Otherwise dx/y is exact and so we know that our curve is lying in T . That is the
required assertion. □

Remark 4.2. By applying Tsuda’s method([16]), we get a slightly better es-
timate. Retain the same notation and assumption as in the previous theorem.
Consider a hyperelliptic curve defined by

y2 = x(x− 1)(x− a1) · · · (x− a2g−1)

and the differential form dx/y. We can compute as follows:

y C
( dx

y

)
= C(yp−1dx) = C((x(x− 1)(x− a1) · · · (x− a2g−1))

p−1
2 dx).

Let

(x(x− 1)(x− a1) · · · (x− a2g−1))
p−1
2

= b p−1
2

x
p−1
2 + b p−1

2 +1 x
p−1
2 +1 + · · ·+ bd p−1

2 −1 x
d p−1

2 −1 + xd p−1
2 .

Note that each bi is a polynomial in a1, . . . , a2g−1. Since d = 2g+1 = np(p−1)+3,
we know

d
p− 1

2
=

n(p− 1)2

2
p+ 3

p− 1

2
.
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It follows that we have C(dx/y) = 0 if the coefficients

bp−1, b2p−1, . . . , b
(
n(p−1)2

2 +1)p−1

are zero. Consider the subvariety of A2g−1 defined by

bp−1 = b2p−1 = · · · = b
(
n(p−1)2

2 +1)p−1
= 0

and let U be its image in Hg. We then know that U is contained in Tg. Moreover,

the number of the above-mentioned coefficients is
n(p− 1)2

2
+1, which is less than

g =
np(p− 1)

2
+ 1.

On the other hand, the hyperelliptic curve defined by y2 = xd − x, mentioned
in the previous proof, is lying in U provided 4 ̸ | p− 1. Hence we obtain

dimU ≥ 2g − n(p− 1)2

2
> g − 1.
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